合成条件对(Eu_{0.045}Li_{3x}Lu_y)₂O₃ 纳米晶发光性能的影响

王林香^{1,2,3}

¹新疆师范大学物理系, 新疆 乌鲁木齐 830054 ²新疆师范大学矿物发光及其微结构重点实验室, 新疆 乌鲁木齐 830054 ³新疆师范大学理论物理自治区重点学科, 新疆 乌鲁木齐 830054

摘要 用沉淀法制备(Eu_{0.045}Li₃₅Lu₃)₂O₃纳米晶,通过测量样品的X射线衍射谱、傅里叶红外光谱、扫描电子显微镜图像 和透射电子显微镜图像分析其微观结构与形貌,测量样品的激发谱、发射谱及发光衰减曲线来分析发光特性。研 究合成条件中沉淀剂、助熔剂、温度、退火条件等因素对(Eu_{0.045}Li₃₅Lu₂)₂O₃纳米晶微结构、发光特性、荧光衰减及能级 寿命的影响。实验表明,氨水沉淀下,合成前驱粉中加入碳酸锂,1000℃活性炭中退火获得的(Eu_{0.045}Li_{3s=0.015}Lu_{y=0.94})₂O₃ 纳米晶,比相同条件不加碳酸锂的样品发光强度提高约2倍;比800℃空气中退火的(Eu_{0.045}Lu_{0.955})₂O₃纳米晶发光强度 提高约4倍。

关键词 材料; (Eu_{0.045}Li_{3x}Lu_x)₂O₃纳米晶; 发光特性; 荧光衰减; 能级寿命
中图分类号 TQ171; O482
文献标识码 A
doi: 10.3788/AOS201636.0316001

Effect of Synthesis Conditions on Luminescence Properties of (Eu_{0.045}Li_{3x}Lu_y)₂O₃ Nanocrystals by Precipitation

Wang Linxiang^{1,2,3}

¹Department of Physics, Xinjiang Normal University, Urumqi, Xinjiang 830054, China ²Key Laboratory of Novel Luminescent Materials and Nanostructures, Xinjiang Normal University, Urumqi, Xinjiang 830054, China ³Key Disciplinary Areas of Theoretical Physics of the Xinjiang Autonomous Region,

Xinjiang Normal University, Urumqi, Xinjiang 830054, China

Abstract $(Eu_{0.045}Li_{3x}Lu_y)_2O_3$ nanocrystals are prepared by the precipitation method. The X-ray diffraction, Fourier transform infrared spectra, scanning electron microscopic images and transmission electron microscopic images are used to analyze the microstructure and morphology of the nanocrystals. To analyze the luminescence properties, the excitation spectra, emission spectra and luminescence decay curves of the samples are measured. The influence of precipitation agent, solvent, temperature, annealing condition and other factors on the microstructure, luminescence properties, fluorescence decay and energy level lifetime for $(Eu_{0.045}Li_{3x}Lu_y)_2O_3$ nanocrystals is researched. The results show that the luminous intensity of the $(Eu_{0.045}Li_{3x=0.015}Lu_{y=0.94})_2O_3$ nanocrystals precipitated in ammonia by adding lithium carbonate into the precursor powder and after calcination in activated carbon at 1000 °C increases by about twice compared with the sample which is prepared without lithium carbonate added, and increases by about four times compared with the sample calcined in air at 800 °C.

Key words materials; $(Eu_{a.045}Li_{3x}Lu_y)_2O_3$ nanocrystals; luminescence properties; fluorescence decay; energy level lifetime

OCIS codes 160.4236; 160.5690; 220.4241; 300.6280

收稿日期: 2015-09-14; 收到修改稿日期: 2015-10-26

基金项目:新疆维吾尔自治区自然科学基金(2012211B16)、新疆师范大学博士科研启动基金(xjnubs1011)

作者简介: 王林香(1979—), 女, 博士, 副教授, 主要从事纳米发光材料的制备和发光特性等方面的研究。

E-mail: wanglinxiang23@126.com

1 引 言

随着辐射检测成像精度要求的提高,作为探测器的核心部件,闪烁晶体的性能改善尤为关键。众多研究者对氧化物基质的高性能闪烁晶体材料进行了研究^[1-8],其中以三价铕为激活剂、镥的氧化物为基质的晶体材料,由于其光效高、荧光寿命短的特性,成为了闪烁体领域研究的一个热点^[9-11]。本文比较了多种合成因素对沉淀法制备(Eu0.045Li3xLu₂)2O3纳米晶微结构、发光特性、荧光衰减及能级寿命的影响,获得了一种较好的制备条件,为得到高性能的闪烁晶体材料奠定了实验基础。

2 实 验

多次沉淀法实验表明,Eu³⁺掺杂浓度为4.5%(物质的量分数)的Lu₂O₃:Eu³⁺发光最强,所以实验以该掺杂浓度为基准。按(Eu_{0.045}Li_{3x}Lu_y)₂O₃化学比,取*x*=0,*y*=0.955的标准硝酸盐溶液混合搅拌后分成等量两份,分别以2mL/min滴入适量碳酸氢铵(AHC)和氨水(AW)溶液中,搅拌并用AW调节悬混液pH值为10,经10h陈化,用去离子水和乙醇先后洗涤过滤三次,并在100℃下烘干,获得前驱粉。用同样步骤,取3*x*=0.015,AW沉淀制备粉体,加入碳酸锂(化学纯)混合研磨,获得前驱粉。将前驱粉放于马弗炉中,在空气和活性炭中退火,制备(Eu_{0.045}Lu_{0.955})₂O₃和(Eu_{0.045}Li_{0.015}Lu_{0.94})₂O₃纳米晶。

用 X 射线衍射仪(XRD, XRD-6100, 岛津)测定样品衍射谱; 红外光谱仪(Magra-IR 750)测量样品吸收谱, 分析前驱粉的主要成分。用透射电子显微镜(TEM, JEM-2010)和扫描电子显微镜(SEM, X-650)观察纳米晶的形貌。用荧光光谱仪(FSL920, Edinburgh), 以氙灯作为激发光源测量样品的激发光谱和发射光谱, 用纳秒脉冲灯(频率为40 kHz)测量样品的发光衰减。所用仪器均进行了校正, 测量均在室温下进行。

3 结果及分析

3.1 结构及成分

图 1 所示为不同合成条件下用沉淀法制备的(Eu_{0.045}Li_{3x=0}Lu_{y=0.955})₂O₃纳米晶 6 个样品的 XRD 图谱,样品的合成条件如图 1 所示,可以看出 6 个样品的衍射峰均与 Lu₂O₃:Eu³⁺的标准谱 JCPDS 86-2475 吻合。同时测量了 AW 沉淀、活性炭中 400 ℃~1000 ℃退火 2 h 得到的(Eu_{0.045}Li_{3x=0.015}Lu_{y=0.94})₂O₃纳米晶的 XRD 图谱,如图 2 所示,在 400 ℃中退火 2 h 样品为非晶态,当退火温度达 600 ℃及以上时,样品衍射峰与 JCPDS 86-2475 标准卡完全吻 合,说明 Li⁺、Eu³⁺完全掺入 Lu₂O₃晶格中,对其立方晶相无影响。

(Eu0.045Li3x=0Lu,=0.955)2O3前驱粉 a(AHC 沉淀)、b(AW 沉淀)的红外吸收谱如图 3 所示,其峰位和化学成键如表 1 所示。由成键情况分析,a由碳酸盐及少量水分组成,b由碱、少量水分及杂质硝酸根组成。

3.2 微观形貌比较

样品(1)~(6)的透射电子显微镜照片及参数分析分别如图4(a)~(f)和表2所示。比较空气中退火的样品(1)、(2)的TEM图像,相对分散性好的样品(1)来说,样品(2)团聚严重,这是因为溶液中稀土阳离子在碱性较强的AW

图 3 (Eu0.045Li3x=0Luy=0.955)2O3前驱粉红外吸收谱

Fig.3 Infrared absorption spectra of the precursor for (Eu_{0.045}Li_{3x=0}Lu_{y=0.955})₂O₃

Table 1 Analysis of infrared absorption spectra of the precursor for $(Eu_{0.045}Li_{3x=0}Lu_{y=0.955})_2O_3$

Precursor po	owder a	Precursor powder b			
Absorption peak position /cm ⁻¹	AHC	Absorption peak position /cm ⁻¹	AW		
	Chemical bond		Chemical bond		
3440	3440 H—OH vibration		H—OH vibration		
2930	-CH2 vibration	-	-		
1412, 1086, 841 C—Ostretching vibratio		1630, 1534, 1070	0—H vibration		
_	_	1380	NO_3^- vibration		

中,溶液局部pH值迅速变化,稀土阳离子快速沉淀及成核而引发团聚;另外,AW作为沉淀剂,主要生成氢氧化物的胶状物,其颗粒间通过氢键和毛细管力粘连,同时水分子会桥接临近沉淀颗粒表面的一OH基团,导致团聚。碱性相对较弱的AHC为沉淀剂时,局部沉淀不会那么迅速,且主要生成碳酸盐,空气中加热时,分解的CO2可以适度降低颗粒间的团聚,产生分散较好的粉体;然而同样条件下,换为活性炭中退火,反而是用AW制备的样品(4)分散性好于AHC制备的样品(3)。另外,提高活性炭退火温度时,纳米晶的粒径均增加,即样品(5)粒径大于样品(3),样品(6)粒径大于样品(4)。

图 4 (Eu0.045Li3x=0Luy=0.955)2O3纳米晶样品(1)~(6)的 TEM 图像

Fig.4 Nanocrystalline TEM images of $(\mathrm{Eu}_{0.045}\mathrm{Li}_{3x=0}\mathrm{Lu}_{y=0.955})_2\mathrm{O}_3$ for samples (1)~(6)

图 5 所示为 AW 沉淀、活性炭 1000 ℃中退火 2 h 制备的(Eu_{0.045}Li_{3x=0}Lu_{y=0.955})₂O₃纳米晶[样品(7)]的 SEM 图像, 颗粒近球形,晶粒度为 50~150 nm。表 2 为以上样品(1)~(7)的参数,根据图 1 和图 2 的 XRD 图谱,由谢乐公式^[12] 计算样品平均粒径,与相应电镜观察纳米晶颗粒度大小比较,基本一致。样品(7)与样品(6)比较,掺杂了浓度 为 1.5%(物质的量分数)的助熔剂 Li^{*},样品(7)晶粒尺寸较大。

表1 (Eu0.045Li3x=0Luy=0.955)2O3前驱粉的红外吸收谱成键分析

图 5 (Eu_{0.045}Li_{3x=0.015}Lu_{y=0.94})₂O₃纳米晶样品(7)的 SEM 图像 Fig.5 Nanocrystalline SEM image of (Eu_{0.045}Li_{3x=0.015}Lu_{y=0.94})₂O₃ for sample (7) 表 2 不同条件下制备的(Eu_{0.045}Li_{1x}Lu_y)₂O₃微观结构参数比较

Table 2 Comparison of microstructure parameters of (Eu0.045Li3, Lu)2O3 prepared under different conditions

Sample	Precipit- ation	El	A	Grain	Particle size	M 1 1 11	
		FIUX	Annealing condition	size /nm	by SEM /nm	morphology and dispersion	
(1)	AHC	/	In the air, 800 °C, 2 h	23	20~50	Nearly spherical, well dispersed	
(2)	AW	/	In the air, 800 °C, 2 h	32	30~100	Agglomeration	
(3)	AHC	/	Activated carbon, 800 °C, 2 h	24	20~50	Nearly sphere, good dispersion	
(4)	AW	/	Activated carbon, 800 °C, 2 h	22	20~40	Nearly sphere, good dispersion	
(5)	AHC	/	Activated carbon, 1000 °C, 2 h	39	30~80	Nearly spherical, well dispersed	
(6)	AW	/	Activated carbon, 1000 °C, 2 h	34	30~80	Nearly sphere, good dispersion	
(7)	AW	${\rm Li}_2{\rm CO}_3$	Activated carbon, 1000 °C, 2 h	50	50~150	Nearly sphere, good dispersion	

3.3 光致发光特性

图 6(a)为表 2 中样品(2)、(6)、(7)的激发谱(A_{em}=612 nm),均包含 255 nm 附近的电荷迁移带(由 O²⁻的 2p 电子和 Eu³⁺的 5d6s 电子作用产生)及 Eu³⁺的 f→f 跃迁产生的 300 nm 以上的弱峰。与样品(2)相比较,同样是 AW 沉淀,样品(6)激发谱强度较强,一方面高温中活性炭产生 CO₂加速碱性物分解,另一方面温度升高,两个因素使纳米晶内部缺陷减少,晶格吸收更多能量,电荷迁移带能量也越高,电荷迁移带弛豫给 Eu³⁺的能量就越多。与样品(6)比较,样品(7)激发谱强度较强,对于半径较小的 Li⁺取代 Lu³⁺(锂离子半径 0.076 nm, Lu³⁺半径 0.084 nm) 掺入晶格,致使晶格对称性降低,提高了偶极跃迁几率,相应电荷迁移带能量传递几率增大;另一方面 Li⁺熔 点较低,可降低反应温度,晶体生长更完善。

实验还测量了激发波长为λ_{ex}=255 nm时样品(1)~(7)的发射谱,如图6(b)所示,均包含612 nm的主发射峰(C₂格位Eu³⁺的⁵D₀→⁷F₂跃迁)、580~700 nm的发射峰(Eu³⁺的⁵D₀→⁷F₁跃迁)和530~560 nm的弱发射峰(Eu³⁺的⁵D₁→⁷F₁跃迁)。不同的是样品(1)~(7)发光强度(612 nm峰值处,按照最强峰值进行归一)由弱到强依次为(2)、(3)、(1)、(5)、(4)、(6)、(7)。

图 6 不同条件下制备(Eu0.045Li3xLuy)2O3纳米晶的(a) 激发谱和(b) 发射谱

Fig.6 (a) Excitation spectra and (b) emission spectra of (Euo.os.Li₃,Lu₂)₂O₃ nanocrystals prepared under different conditions 纳米粉体的发光强度受到颗粒表面活性的影响,分散度越好,颗粒表面活性越好,发光就越强;粉体团 聚越严重,颗粒表面活性越差,若此时颗粒表面还存在官能团一OH,C—C,C—H等时,其振动会与相近的发

光中心相互作用,致使发光中心发生荧光猝灭。与样品(1)比较,样品(2)严重团聚,比表面积小,所以颗粒表面活性差,粉体的发光较弱;与样品(1)比较,样品(3)发光较弱,这是由于活性炭在高温下产生CO₂,抑制了碳酸盐分解,使晶格内出现缺陷,所以发光减弱;相反,活性炭产生CO₂会加速碱性物质分解,晶格内部缺陷减少,发光就会增强,所以样品(4)发光比样品(1)强,可见此时活性炭参与反应,比沉淀剂对纳米晶发光强度的影响要大。

据 Shi等^[13]对差热-热重的分析,样品(1)、(5)前驱粉都是 Lu 基碳酸盐,将在 132 ℃开始分解脱水、脱一OH, 在 710 ℃开始分解生成 Lu₂O₃和 CO₂,800 ℃晶化开始趋于完全。根据 Guo等^[14]的报道,在空气不流通、温度接 近 840 ℃情况下,活性炭会少部分氧化为 CO和 CO₂,CO₂会抑制样品(5)碳酸盐分解,产生内部缺陷;当温度达 到 1000 ℃时,活性炭会发生 C+CO₂=2CO反应,在两个动态反应中最终促进前驱粉的分解和晶格生长。由实 验结果可见,1000 ℃高温和活性炭共同参与反应成为样品(5)比样品(1)发光强的主要原因。

样品(5)比样品(4)发光弱的原因如下:1)样品(4)前驱粉主要是氢氧化物,在加热温度为300℃~700℃时分解,400℃开始发生相变¹¹⁵¹;样品(5)前驱粉是碳酸盐,要在约710℃后开始分解¹¹³¹,所以样品(4)比样品(5)前驱粉的相变初始温度低很多;2)样品(4)、(5)均在活性炭条件下煅烧,炉腔相对密闭情况下,有部分活性炭产生的CO₂加速了样品(4)前驱粉中氢氧化物的分解,减少了粉体内部的缺陷。综合以上两个因素,样品(4)的相变温度低,反应驱动力较大,更有利于晶体生长。710℃时,活性炭产生的CO₂开始抑制样品(5)分解,但温度达到1000℃时,样品(5)碳酸盐分解生成的CO₂,又会与活性炭反应生成CO,在两个动态反应中最终促进样品(5)前驱粉的分解;从实验结果看,煅烧温度1000℃下,样品(5)颗粒度较大,分散性比样品(4)略差,这表明最初CO₂抑制样品(5)分解导致的内部少量缺陷依然存在,致使样品(5)发光强度比样品(4)弱。

与800℃退火比较,同样条件下1000℃生长的样品晶格缺陷较少,发光较强,如样品(6)发光强度大于样品(4),样品(5)发光强度大于样品(3)。此外,样品(7)发光强度比样品(6)提高约2倍,样品(7)发光强度比样品(2)提高约4倍,可见Li⁺掺入Lu₂O₃:Eu³⁺,既可作为助熔剂,降低反应温度,使晶粒尺寸增大,降低缺陷引起的发光猝灭,也可作为敏化剂,促进晶格能量转移及Eu³⁺能量吸收,增强合成材料的发光强度;另外,掺入的Li⁺与表面氧悬键结合,表面缺陷减少,降低了晶粒表面态引起的荧光猝灭,发光增强。

3.4 荧光衰减和能级寿命

图 7 所示为表 2 中样品(1)~(7) ${}^{5}D_{0} \rightarrow {}^{7}F_{2} \pi {}^{5}D_{1} \rightarrow {}^{7}F_{1}$ 的荧光衰減曲线(λ_{e} =255 nm),用单指数函数对曲线进行拟合,得到样品的能级寿命如表 3 所示。样品(1)~(7)的 ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ 能级寿命均为毫秒级,其中用 AW 沉淀,1000 ℃活性炭中退火获得样品(6)的寿命较短;所有样品的 ${}^{5}D_{1} \rightarrow {}^{7}F_{1}$ 跃迁能级寿命均为几十微秒。样品(7)与样品(6)比较,添加 Li*制备的样品(7)的 ${}^{5}D_{0} \rightarrow {}^{7}F_{2} \pi {}^{5}D_{1} \rightarrow {}^{7}F_{1}$ 能级跃迁荧光寿命和发光强度都得到提高,据文献[16]报道碱金属离子掺入纳米发光材料,可使晶粒尺寸增加,结晶性能提高,寿命和强度都增加,与实验结果一致。

图 7 λ_{ex}=255 nm 时 Eu³⁺的⁵D_{J=0,1}能级的荧光衰减曲线

由于 Eu³⁺的激发态 ⁵D₁、⁵D₀的能级差比较小, $\Delta E(^{5}D_{1} \rightarrow ^{5}D_{0})=1733 \text{ cm}^{-1}, ^{5}D_{1}$ 激发态上的电子,只需 1~2个声子,很容易弛豫到 ⁵D₀能级,再由 ⁵D₀能级跃迁发射,所以 ⁵D₁能级寿命较 ⁵D₀小很多。当高能级 ⁵D₁的多声子无

辐射弛豫增加,来自邻近之间的⁵D₁+⁷F₀→⁵D₀+⁷F₃交叉弛豫增加,⁵D₀电子数增加,⁵D₀辐射跃迁几率就会增大; 但同时导致 ⁵D₁→⁷F₁猝灭几率增大,⁵D₀与 ⁵D₁的发射强度比迅速增加,即 ⁵D₀和 ⁵D₁的能级寿命不成线性关系, 这也和实验测量结果一致。

综上所述,纳米材料发光强度和荧光寿命受到样品颗粒尺寸、样品表面缺陷、发光中心浓度、交叉弛豫、 能量吸收与传递效率等多种因素的影响,另外不同的沉淀剂、助熔剂、煅烧温度及煅烧气氛等反应调控措施,都可间接引起辐射跃迁速率、无辐射跃迁速率和吸收几率的变化,从而影响粉体的发光性质,其中的实 验规律还有待于进一步发现和研究。

	表3	(Eu _{0.045} Li	$(3xLu_y)_2O_3$	3 纳米晶的	J'D,能夠		
T 11	2 ⁵ D	1	11.6	C/E	т · т		

Table 5	D _J energy	level metime of	$(Eu_{0.045}LI_{3x}Lu_y)_2O_3$ handly	stais

Energy level	Sample	(1)	(2)	(3)	(4)	(5)	(6)	(7)
${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{2}$	Lifetime /µs	1630	1920	1630	1510	2110	1310	1940
${}^{5}\mathrm{D}_{1} \rightarrow {}^{7}\mathrm{F}_{1}$		24	30	28	26	34	34	42

4 结 论

用沉淀法在不同合成条件下制备了(Eu_{0.045}Li_{3x}Lu_y)₂O₃纳米晶。结果显示,退火温度为600℃时,制备的(Eu_{0.045}Li_{0.015}Lu_{0.94})₂O₃样品已成相,且Li*能完全掺入晶格中,对立方晶相无影响。实验表明,高温活性炭生成的CO₂ 会加快前驱粉中碱性物的分解,减少Lu₂O₃晶格内部缺陷,比沉淀剂导致的分散性对样品发光强度的影响要大。 在AW沉淀制备的前驱粉中加入碳酸锂,1000℃活性炭中退火获得的(Eu_{0.045}Lu_{0.94})₂O₃纳米晶,比不加碳酸锂 时相同条件下合成样品的发光强度提高约2倍;比AW沉淀、800℃空气中退火合成的(Eu_{0.045}Lu_{0.955})₂O₃纳米晶发光 强度提高约4倍。

参考文献

- 1 Wu Y T, Luo Z C, Jiang H C, et al.. Single crystal and optical ceramic multicomponent garnet scintillators: A comparative study[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 780: 45–50.
- 2 Luo Z H, Jiang H C, Jiang J, *et al.*. Microstructure and optical characteristics of Ce:Gd₃(Ga,Al)₅O₁₂ ceramic for scintillator application[J]. Ceramics International, 2015, 41(1): 873-876.
- 3 Yang Bin, Zhang Yuepin, Xu Bo, *et al.*. Preparation and optical properties of Ce³⁺-doped high lutetium-gadolinium oxide glasses[J]. Acta Optica Sinica, 2013, 33(2): 0216001.

杨 斌,张约品,徐 波,等. 铈掺杂高钆镥氧化物玻璃制备和光谱性能[J]. 光学学报, 2013, 33(2): 0216001.

4 Fan Sijun, Yu Chunlei, He Dongbing, et al.. Physical, chemical and spectroscopic properties of radio-photoluminescent glass[J]. Acta Optica Sinica, 2010, 30(7): 1872-1877.

凡思军, 于春雷, 何冬兵, 等. 辐射光致发光玻璃物化性能及光谱性质研究[J]. 光学学报, 2010, 30(7): 1872-1877.

5 Peng Xiaoshi, Wang Feng, Xu Tao, *et al.*. Study on time characteristics of fast time response plastics scintillator EJ-232[J]. Acta Optica Sinica, 2011, 31(12): 1216001.

彭晓世, 王 峰, 徐 涛, 等. 快响应塑料闪烁体 EJ-232的时间特性研究[J]. 光学学报, 2011, 31(12): 1216001.

- 6 Dousti M R, Poirier G Y, De Camargo A S S. Structural and spectroscopic characteristics of Eu³⁺-doped tungsten phosphate glasses[J]. Optical Materials, 2015, 45: 185-190.
- 7 Ma C, Li X D, Liu S H, *et al.*. Fabrication of Lu₂O₃:Eu transparent ceramics using powder consisting of mono-dispersed spheres[J]. Ceramics International, 2015, 41(8): 9577-9584.
- 8 Whiffen R M K, Antic Ž, Speghini A, *et al.*. Structural and spectroscopic studies of Eu³⁺ doped Lu₂O₃ Gd₂O₃ solid solutions[J]. Optical Materials, 2014, 36(6): 1083-1091.
- 9 Kopylov Y L, Kravchenko V B, Dulina N A, *et al.*. Fabrication and characterization of Eu³⁺-doped Lu₂O₃ scintillation ceramics[J]. Optical Materials, 2013, 35(4): 812-816.
- 10 Silva I G N, Rodrigues L C V, Souza E R, *et al.*. Low temperature synthesis and optical properties of the R₂O₃:Eu³⁺ nanophosphors (R³⁺: Y, Gd and Lu) using TMA complexes as precursors[J]. Optical Materials, 2015, 40: 41-48.

11 Wang Linxiang, Zhu Hengjiang, Yin Min. Fabrication and luminescent properties of Eu³⁺-doped Lu₂O₃ nanopowders and transparent ceramics[J]. Chinese Journal of Luminescence, 2011, 32(9): 913-919.

王林香,祝恒江,尹 民.纳米粉末及透明陶瓷的制备及其发光性能[J].发光学报,2011,32(9):913-919.

- 12 Zhang Lide, Mou Jimei. Nano-Materials and Nano-Structures[M]. Beijing: Science Press, 2001. 张立德, 牟季美. 纳米材料和纳米结构[M]. 北京:科学出版社, 2001.
- 13 Shi Y, Chen Q W, Shi J L. Effect of precipitants on morphologies of Lu₂O₃ phosphors co-precipitation process[J]. Journal of Inorganic Materials, 2008, 23(4): 824-828.
- 14 Guo Yeshu, Zhu Yugang. Exploration of thermal analysis of activated carbon[C]. 3rd Conference of the Chinese Chemical Society on Thermal Analysis Kinetics and Thermal Dynamics, 2011: 148–152.
- 郭叶书,朱玉刚.活性炭自燃点热分析探索[C].中国化学会第三届全国热分析动力学与热动力学学术会议,2011:148-152.
- 15 Qiu Huajun, Shi Ying, Xie Jie. Synthesis of nanosized Lu₂O₃ powders with different morphologies by solvothermal method[J]. Journal of Synthetic Crystal, 2010, 39(2): 422-427.

邱华军,施 鹰,谢 杰. 溶剂热法制备不同形貌纳米 Lu₂O₃粉体[J]. 人工晶体学报, 2010, 39(2): 422-427.

16 Dhananjaya D, Nagabhushana H. Enhanced photoluminescence of Gd₂O₃: Eu³⁺ nanophospors with alkalic (M=Li⁺, Na⁺, K⁺) metal ion codoping[J]. Molecular and Biomolecular Spectroscopy, 2012, 86: 8-14.

栏目编辑:张浩佳